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ABSTRACT

The subject of this report is the controllability of distributed
parameter systems. Two closely related topics also covered are
minimum energy control systems and the reachable set of states

with a norm constraint on the control.

A summary of the techniques which are applicable to the solution
of control systems problems is given. The eigenvalue-eigenfunction
expansion method for the solution of homogeneous boundary value prob-
lems is used. Problems in which the control appears at the boundary
are treated by converting the non-homogeneous b.v.p. to an equivalent

homogeneous b.v.p. by introducing generalized functions.

The generalization of the concept of controllability of finite
dimensional systems to infinite dimensional systems is given. The
pseudo-inverse of a linear operator is defined which is a generalization
of that of a matrix for finite dimensional spaces. The pseudo- inverse
is then used to obtain minimum energy control for distributed parameter
systems., It is shown that this generalization includes results for finite
dimensional systems which are available. In this case the solution of
the minimum energy control problem involves finding the pseudo-inverse
of a matrix. In the infinite dimensional problem, it is necessary to solve

for the eigenvalues and eigenfunctions of an integral operator.

The necessary and sufficient conditions for the states which are
reachable when the control is required to satisfy a norm constraint are
given. The conditions are obtained by an application of the moment
problem to distributed parameter systems. These results are then

used to obtain conditions for complete controllability.

Applications of the material are made to specific examples of

control systems problems.
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CHAPTER 1

INTRODUCTION

The area of research of this dissertation is in the control of
distributed parameter systems.

Until a few years ago, all of the emphasis of control systems was
placed on systems described by ordinary differential equations. A
well formulated theory has developed around these systems, particularly
in the case of linear systems. In an attempt to obtain more generality,
control systems engineers naturally attempted to obtain results for
other systems which required control. One of the important class of
systems is that of the type described by partial differential equa-~
tions. These systems are described by the more illustrative engineer-
ing term, distributed parameter systems.

One of the most comprehensive articles appearing so far on this
topic is that by Wang in [1]. He covers the wide range of problems of
interest to control systems engineers. He has taken many of the
problems which have been solved for finite dimensional systems and
reformulated them as problems applied to distributed parameter systems.
A major part of his work, as with most papers appearing on distributed
parameter systems, is on optimum control, that is, finding a control

which will minimize a specified cost functional.



The topic of controllability has found a great deal of interest
in the finite dimensional theory and is a significant topic for re-
search under more general circumstances. Very little work has appeared
in the engineering literature on the subject of controllability of
distributed parameter systems, and this will be the subject of this
dissertation. Two closely related topics to controllability are also
covered. These are minimum energy control systems and the reachable
set of states with a norm constraint on the control. The only related
work on distributed parameter known to the author appears in Wang [1]
and ﬁrogan [2]. Both touch the subject only briefly. More will be
said concerning their results in Chapter 3. Abstract results on the
theoretical aspects of controllability have been obtained by Fattorini
[3, 4)]. His problems are set in an abstract Banach space as is most
of the work on the mathematical theory of control which has appeared
recently, for example, by Balakrishnan [5]. Russell [6] has presented
some material on controllability of distributed parameter systems which
is to be published soon.

The term controllability was introduced by Kalman for finite
dimensional control systems around 1960 and has become a fundamental
concept in the presently developing field of systems theory. A general
summary of the results available for finite dimensional linear control
systems can be found in Kalman, et. al. [7]. The minimum energy control
of systems is also found in [7] where use is made of the pseudo-inverse

of a matrix.

Hsieh [8] approached the minimum effort control system problem
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for finite dimensional systems by setting the problem in a Hilbert
space and found convenient results through the use of functional
analysis.

Antosiewicz [9] found conditions for controllability based on
geometric ideas in Banach spaces and obtained a result very similar to
that which was given by Banach in [10] as conditions for the solution
of the moment problem. Antosiewicz, however, restricted his results
to systems whose states are finite dimensional.

Kreindler [11] obtained results on the set of reachable states
with a norm constraint on the control for finite dimensional linear
systems.

Numerous other papers have appeared on the control of distributed
parameter systems. For the most part, they are concerned with optimum
control and so they will not be mentioned here.

A brief review of the work in the remaining chapters of this
dissertation will now be given.

Chapter 2 is titled "Partial Differential Equations in Control
Systems Applications." There are many books on partial differential
equations; however, there is no particular reference suitably oriented
to control systems applications. Thus Chapter 2 is a summary of the
techniques which have been applied elsewhere which seem appropriate
to the topic of this dissertation. The eigenvalue-eigenfunction method
of solving non-homogeneous partial differential equations with homo-
geneous boundary conditions is presented. The solution of problems

where the control appears at the boundary is treated next. This



situation leads to non-homogeneous boundary value problems. Several
methods are available for handling this type of problem. The method
presented in Chapter 2 follows that of Friedman [12] where the non-
homogeneous b.v.p. is changed to an equivalent non-homogeneous equation
wifh homogeneous boundary conditions by introducing generalized
functions.

Chapter 3 is titled "Controllability." This chapter contains the
generalization of the concept of controllability to infinite dimensional
systems. The pseudo~inverse of a linear'operator is defined which is
a generalization of that of a matrix for finite dimensional spaces.

The pseudo-inverse 1s then used to obtain minimum energy control for
distributed parameter systems.

Chapter 4 is titled "Reachable States." The necessary and
sufficient conditions on the set of reachable states are found when the
control is required to satisfy a norm constraint. The results are then

applied to a specific example.




CHAPTER 2

PARTIAL DIFFERENTTAL EQUATIONS IN CONTROL SYSTEMS APPLICATIONS

2.1 GENERAL DISCUSSION OF THE SYSTEMS IN THIS REPORT

This report will be concerned with the control of systems

described by linear partial differential equations.

Systems which

occur in control systems applications can usually be described in one

of the two following ways:

or: Ay + f (2.1)
or
2 3
—y—z + a2 = Ay + f (2.2)
at ot

y(x,t) is a real valued function of the variables (x,t) where xe{ and

teT

a bounded open set in En

n dimensional Enclidean space

(0, tl), a time interval with O arbitrarily
chosen as the initial time and tl a final time
a constant

a spatial operator defined on some domain, D(A),

dense in LZ(Q)



LZ(Q) = sgpace of square integrable functions defined on Q.
D(A) = domain of A
feLZ(QxT)

In addition to the above, a set of boundary conditions is given

which can be expressed in the form

Uy = w
w = a given function on (30xT)

3l = boundary of Q.

For example

ax
= (0,1)
3 = {0,1}
Uy (0,t) =0
Uy (1,t) = u(t), wu(t) e L,(T)
w(0,t) =0
w(l,t) = u(t)

represents the partial differential equation

2
QXlgét) . 3 y(;;t) O<x<l,  O<t<t;
9x
}'(O,t) = 0

y(1,e) = u(t)




The initial conditions of the state of the system are also assumed

given. The state of the system is assumed to be as follows.

y(x,t) = state of the system for equation (2.1)

Y(X’t) ‘
state of the system for

| equation (2.2)
ay(x,t)
at

The system given in equation (2.2) can be changed to the form of
that given in equation (2.1) by introducing the two component vector

Z(X,t),
y(x,t)
z(x,t) =

Ay (x,t)
ot

Then z(x,t) satisfies the differential equation

%%— = A'z + f!
where
0 1
A' =
A -af
0
£' =
Lf

Thus the partial differential equations to be treated can be

written very briefly in the form



1

T Ay + f£ (2.3)
Uy = w
y(x,0) = yo(X) (2.4)

Equation (2.3) represents the partial differential equation and
equation (2.4) the boundary conditions and the initial conditions.

The form of equations (2.3) and (2.4) is typical for control
systems applications. The functions f and w are called the con-
trols and it is their selection in making the state behave in some
desired manner which makes the problem one in control systems. The
function £ 1is called a distributed control and the function w 1is
called a boundary control.

It will be assumed that the system described by equations (2.3)
and (2.4) 1is well posed. By this it is meant that (1) a solution
exists, (2) it is unique, and (3) the solution depends continuously on
the initial data and the control. The meaning of (3) is made more
precise by the introduction of sets of norms on appropriate spaces.
The function spaces to be considered are the LZ(SD, LZ(SMT), and

LZ(T) spaces. The inner product on each of these spaces is denoted as

follows.
For p, q ¢ LZ(Q),

[p, q]Q = j{;P(x)q(x)dx.



For £, g € L, (2xT)
t

[f, g]QxT = fl J. f(x,t)g(x,t)dxdt.
0 Q
For u, v ¢ L2(T)
ty
(u,vl, =f v(t)u(t)dt.

0

From each of these inner products, a norm follows naturally.

For example,

for p ¢ LZ(Q),

1/2
”PHQ = [p, P]Q

Thus, by continuous dependence on the initial data it is meant
that if yl(x,t) and yz(x,t) are the response to initial conditions
yl(x,O) and y2(x,0) respectively, then Y1 is close to ¥, in the xT
norm provided yl(x,O) is close to yz(x,O) in the 9 norm. I.e., given

€>0, there is a §>0 such that

Ilyl(x’o) - YZ(X,0)||Q <8
implies

|Iy1 - Y21|QI(T <e.

Similar continuity in terms of the norms is implied with respect

to the control terms.



The existence and uniqueness requirements of the well posed
assumption of equations (2.3) and (2.4), along with the linearity,
implies that if the initial condition yoeLz(Q), the distributed control
stz(SZXT), and the boundary conditions include a control, say ust(T),

then the solution can be written

y = Ly, + Lyf + Lu (2.5)

where LI’ Lﬂand LB are linear operators.

LI = operator from set of initial conditions to
solutions
LQ = operator from distributed controls to solutions
and
LB = operator from boundary controls to solutions

The operators LI’ LQ, and L_ are integral operators given by their

B

corresponding Green's functions GI’ G, and GB.
Ly, (,t) = fg 6 (x,t5 ©) y, (B)dE (2.6)
1
LQf(x,t) = fG(x,t; £,1) f(&,1)dEdt (2.7)
0 Q
51
LBu(x,t) = .[ GB(x,t; ) u(t)dr (2.8)
0

where for almost all (x,t) € @xT, GI(x,t; £) eLz(Q) as a function of
£, G(x,t; £,1) sLZ(QxT) as a function of (&,1) and GB(x,t; T)st(T) as

a function of r.

10




One of the important topics in the study of partial differential
equations is to determine when the problem presented in equations (2.3)
o and LB.

The answer to this question is not easily resolved in the very

and (2.4) has continuous inverses LI, L

general setting in which the equations have been written here. The
specification of conditions under which a continuous inverse does exist
has required a very abstract mathematical treatment and is generally
beyond the level of rigor which engineers usually employ when attempt-
ing to solve specific problems. The approach to be taken in this
dissertation is to apply the techniques used by Friedman [12] to con-
trol systems problems. That is, it is possible to discuss many
properties of differential equations in general terms of linear oper-
ators. The general theory of linear operators belongs to the field of
functional analysis which is a highly developed field of mathematics,
and it is not the purpose of this dissertation to contribute to the
theory of functional analysis or partial differential equations.

The next section will be concerned with finding the functioms

GI’ G, and GB in special cases of interest in control systems applic-

ations.

11



2.2 HOMOGENEOUS BOUNDARY VALUE PROBLEMS
One of the most important methods for solving problems involving
partial differential equations is the use of eigenfunction expansions.

Its use will now be outlined for the case where

§X£§%£l. = Ay(x,t) + f (2.9)
Uy = 0
y(x,0) = yo(X)

First, the eigenvalue-eigenfunction problem assocliated with the

above is solved. That is, find the set {wn} such that

Awn(x) vln¢n(x) (2.10)

an = 0

where the wn's are functions of xef only.
The adjoint operator to A and the boundary conditions on which

it acts are found next.

Let

A*

adjoint operator of A

U* adjoint boundary condition operator

Then U* and A* are defined to satisfy the relation

[q: APJQ = [A*q’ p]Q

12




for all p such that
Up = 0
and all gq such that
U*q = 0.

The adjoint set of eigenvalues and eigenfunctions are also found

from

A*¢ = vy ¢ (2.11)

Again the ¢n's are functions of xe{ only. Two important relation-

ships between the wn's and ¢n's are
(6., ¥ Jg = O ify #A

and if An is an eigenvalue of A, it is also an eigenvalue of A*
{12, p. 199].
Since the magnitudes of the eigenfunctions are arbitrary, they

may be normalized to satisfy
(o s v 1q = 6 (2.12)

where

13




Assuming the'{wn} span L2 ), an arbitrary function yeLZ(Q}(T)

can be expanded as

y(x,t) = nglyn(t)wn(X)

where

ACKEN RCIROLE

since, for almost all teT, y(x,t)eLz(Q).

Also, expand f(x,t) in terms of {wn}.

[e -]

f(x,t) = Z fn(t)\bHCX)
=1

where

£ (t) =f9f<x,t)¢n<.x)dx

Substitute the above into equation (2.9)

2500, = 2y OM00 + 2 (04,6

n=1 n=1

Using equation (2.10),

nz=1 yn(t)\bn(x) = Z yn(t)knwn(X) + Z fn(t)tbn(x)

n=1 n=1

14

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Multiplying through equation (2.18) by ¢n(x) and integrating over

9 the following set of ordinary differential equations results.
yn(t) = _lnyn(t) + fn(t) n=1, 2, ... (2.19)

with initial conditions

¥ (0) = fy(x,omn(x)dx
Q

Thus the solution to this countably infinite set of ordinary
differential equations, together with the expansion, equation (2.13),
provide the solution to the partial differential equation, equation
(2.9). Notice that the solution given by equation (2.13) satisfies

the boundary conditions by the choice of the eigenfunctions wn.

I.e.,

Uy =-§_}n(t) uy = 0 (2.20)

because of equation (2.10).

This form of the solution is very valuable in engineering appli-
cations. 1In general, the eigenfunctions cannot be found analytically;
however, a sufficient finite number to adequately approximate the
infinite expansion can usually be found either numerically from
equation (2.10) or experimentally from the physical model itself.

The solution to equation (2.19) is given by:

At t A (e-1)
yo(t) = y (0)e ™ +](; e £ (1)t (2.21)

15



Multiplying through equation (2.21) by wn(x) and summing

x (t-1)

=] t =]
n
glynwn(x) Zy @e ™y () + fo e b_E_(v)dr

n=1
(2.22)

Substituting equation (2.13) and equation (2.16) into equation (2.22),

il A (t-1)
yx,t) = Z y (0)e *n b0 +f f Z b ()6 (E)E(E,T)dEdT
Q

n=1 n=1 (2.23)
define
yo(x,t) Z Yy (O)e tb (%) (2.24)
0 t<0
H(t) = (2.25)
1 0<t
the value of H at t=0 is left undefined.
A (t -T)
60ets 60 = H(E-D) 2, e B 4 (00 (D) (2.26)
n=1
then
ty
yCet) =y 0 + | [ et BosE (2.27)
o Q

G(x,t; E,T) is the Green's function for this problem, and yo(x,t)
is the response due to the initial conditions. H(t) is the Heaviside

unit step function.

16



2.3 NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS
In many engineering applications the control does not appear as

shown in equation (2.9), but appears at the boundary in the form

2 (gtt) = Ay(x,t)

(2.28)
Uy = w
It is still useful to be able to have an eigenfunction expansion
of y(x,t); however, finding eigenfunctions of A with non-homogeneous
boundary conditions is no longer a meaningful problem. The reason is
that when A 1is defined to act on some domain where Uy = 0, A 1is a

linear operator on that domain, e.g., if

Uyl = Uy2 =0

then

U(y; +y,) =0
and

Ay, ty)) = &y, + 4y,
But if

Uy1 = w

Uy2 = w

U(Yl + y2) = 2w

17



so that the set of y on which A acts is not a linear space. There
is a formal procedure which is very advantageous for transforming a
non-homogeneous boundary value problems to an equivalent homogeneous
b.v.p. In making the transformation, it is convenient to use general-
ized functions, in particular, & functions and their derivatives. Some
of the properties needed will now be given.

First, two representations for the § functions will be given.

§(t) = H'"(t) teT (2.29)
and
§(x-¢) = Z(bn(ﬁ)wn(X) x,Ee 0 (2.30)
n=1

The first is quite common. To prove the validity of the second,

let p(x) be an arbitrary function on . Then

fp(i) Z¢n(£)wn(X)d€ = Z pnwn(x) (2.31)
Q n=1 n=1
= p(x) (2.32)

Now some properties of the Green's function will be shown.

[+ ]

A (t-1)
G(x,t; E£,7) = H(t-1) :E: e ™ wn(X)¢n(€) (2.33)
n=1
2 A (t-1)
zas_ct; - H'(t-1) D e ® v_(x)¢_(&)
n=1
= A (t-1)
FHED 2 A e ™y (04 (D) (2.34)

n=1

18




CA_(t-1)
B e Ay (06 (0 (2.35)

AG =
n=1
A (t-1)
- e e ™ Ay (04 (D) (2.36)
n=1
therefore
A (t-1)
aG _ ' n
3¢ A = H (t-1) gle wn(x)¢n(a) (2.37)
however
H'(t-1) = 0 for t # 1 (2.38)
thus
¥ s = H(t-D) gwn<x>¢n<a> (2.39)
or
DG = &(t-1)8(x-E) (2.40)
where
9
D = 357 - A : (2.41)

Next, D* and its set of boundary conditions are found.

D* must satisfy

t t
1 1
f(x,t)Dg(x,t)dxdt = D*f(x,t) g(x,t)dxdt (2.42)
i L

19




for all g such that

Ug = 0

g(x,0) =0
Writing out the left side of equation (2.42), and integrating by parts,

t
f 1 f £(x,t) [Q&%Q-Ag(x,t)] dxdt
0 Jo

Ltl J- 20,0 f t=t,
= o -~ 8(x,t) 3 dxdt + Q[g(x,t)f(x,t)]t,=0 dx

t
-f 1 f £(x,t)Ag(x,t)dxdt (2.43)
o Ja
t
- lf g, ) [= 20D _ g (x,t) Jaxdt (2.44)
0 “q
thus
_ _ of _
D = - 3L _ pu (2.45)

with f such that

f(x,tl) =0

U*f

[]
(o]

(2.46)

Next it will be shown that D*G has a representation as given in
equation (2.40) also. In this case D* acts with respect to the (£,T1)

variables of G.

20



Take - 3 in equation (2.33),

T
- 3 6(x,E5 t,7) = B'(t-1) gl 'eA“(t_T)%(e:)wn(x)
+ H(t~-1) i A exn(tq)ebn(r:)wn(x) (2.47)
n=1 0
A%G = H(t-) 2 ex“(w)mn(a)wn(x) (2.48)

n=]1
Since the eigenvalues of A* are the same as those of A,

A* ¢n = >‘n ¢n

Thus

An(t-t)

A*G = H(t-T) Z )‘n e ¢n(€)¢n(x) (2.49)
n=1

Combining equation (2.47) with equation (2.49),

A_(t-T1) (2.50)
- X _peameen 2 el 4 ()Y ()
n=1
or
DAG = 6 (x-£)§(t=1) (2.51)

Let the boundary condition operator U act on the x variable

in the expansion for G in equation (2.33),

A (t-1)
e 2 e 4 (DU () =0 (2.52)

n=1

21



+
Evaluating G in equation (2.26) at t = O
+
G(x,0 ; £E,1) = 0 TeT
By this it is meant that, for all teT,

lim G(x,t; £,7) =0

0"

Similarly, U* acting on the £ variable yields,

A (t-1)
U*G = Z e " Ukg (E)p (x) = 0

n=1

Evaluating G at 1 = tl’

G(x,t; g,ti) =0, teT

(2.53)

Summarizing these results on G, for D and U acting on the (x,t)

variables,
DG = §(x-£)8(t-T)
UG = 0
G(x,0+;*E,T) = (
For D* and U* acting on the (£,1) variables
D*G = §(x-E)S8(t-1)
U*G = 0

Glx,t; E,t)) = 0

22

(2.54)

(2.55)

(2.56)

(2.57)



These results will now be applied to solving the non-homogeneous
b.v.p. by making use of the solution to the homogeneous b.v.p. Let

the solution to

Dy = g
Uy =0 (2.58)
y(x,0) =0
be given by
1
y(x,t) =f f G(x,t; £,7)g(g,1)dEdr (2.59)
0 Yo
or

and suppose the problem is to solve

Dy = 0
Uy = w (2.61)
y(x,0) =0

One method of making use of the solution of equation (2.58) to

solve equation (2.61) is to find a function, h, defined on (QUOQ)XT

such that

Uh = w (2.62)

23



Let 2z be the solution to

Dz

-(Dh) (2.63)

Uz = 0

z(x,0)

L]
o

let

y=2z+h (2.64)

then

Dy = Dz + Dh (2.65)

Uy = Uz + Th

y(x,0) = z(x,0) + h(x,0)

thus
Dy = 0 (2.66)
Uy = w

y(x,0) = 0

hence y 1is the solution to equation (2.61).

Suppose there exists a generalized function F on QxT, depending

on w, satisfying

[£, Flo,r = = [£, Dh]y . + [D*E, hl, . (2.67)

24



for all f such that

n
o

U*f

f(x,tl) =0

and h such that
Uh =w

h(x,0) =

I
(=]

The first term on the right hand side of equation (2.67) is the

solution to equation (2.63) if, for fixed (x,t),
f(E’T) = G(X,t; gaT) (2-68)

i.e.,
t
1
z(x,t) =.l(; J;z G(x,t; &,71) [Dh(g,T)]dEdr (2.69)

However, because of equation (2.57), equation (2.67) and equation
(2.69) imply

t
z(x,t) = f ! fG(x,t; £,T)F(E,1)dEdT
Q

o

t1
[ [ mree,es g0 nagr (2.70)
V0 Q
Using equation (2.56),

t
z(x,t) = f lf G(x,t; E,T)F(E,1)dEdT - h(x,t) (2.71)
0 Q

25



Since the solution to equation (2.61) is given in equation (2.64),
1
et = | [ et £ 0w, naga (2.72)
0 Q ~

In summary, the solution to the non-homogeneous b.v.p., equation

(2.61), 1s the solution to the homogeneous b.v.p. with forcing term F,
Dy = F
Uy = 0

Y(X,O) =0

where F 1is a generalized function, depending on w, satisfying equa-

tion (2.67).

26



2.4 EXAMPLE
A simple example will demonstrate the use of this method. Consider

the heat equation. given by

ay(x,t) . dry(x,t) (2.73)

ot - 2 *
ax

y(x,0) =0

y(0,t) = 0

y(1,t) = u(t)

In this case,

Q= (0,1)

T = (O,tl)
d2

A= -—E
dx

u(t) = control

First find the eigenvalues and eigenfunctions for the homogeneous

boundary value problem,

2
d Qéx) = AY(x) (2.74)
dx

() =1y(@) =0
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The general solution is

w(x)-asin‘[-T x + b cos ,/:T X

The non-zero solutions satisfying the boundary conditions occur

when

A=-n21r2 n=1, 2, ...

b=20

In order to make the eigenfunctions have unit magnitude on (0,1),

let

a=v2

Therefore the eigenfunctions are

l])n(x) = /2 sin nmx (2.75)

This set forms an orthonormal complete set on (0,1).
Next the adjoint operator A* and its set of boundary conditions

are found to satisfy,

1 1
I p(x)Aq(x)dx = f A*p(x)q(x)dx (2.76)
0 0

for all q(x) such that

q(0) = q(1) =0
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Writing out the left hand sie of equation (2.76) and integrating

by parts
1 2 L )
j(; p(x) d_:fz‘_) dx = p(x) 'd-;%{l lp - a® gﬂ% lo
1 2
+_I(; q(x) d—i:(j;—)— dx (2.77)

Therefore equation (2.76) is satisfied by

2
A*p(x) = Q_Réil
dx

with the boundary conditions
p(0) = p(1) =0

Next, a generalized function, F, is found satisfying equation

(2.67) for all f such that
f(0,t) = £(1,t) = f(x,t1)= 0

and all h such that

h(0,t) = 0
h(l,t) = u(t)
h(x,0) = 0

Writing out the second term on the right hand side of equation

(2.67),
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9T

1 2
RS [ (g LI ’ZS’”]h(s,r)dsdr
0 0

Integrating by parts,

1

. =t
[D*f,h]QXT =f [ - f(E’T)h(E’T)]Tgol dg
0
Jtl SE(E;T) oh(E, 1), 5T
o) e g - e R ar
g, 1 )

+.I' _f £(E,1) [ah(g;T) J 2 :zg’T)]dEdr (2.78)

0o o

Using the fact that the final term on the right hand side of
equation (2.78) is [f, Dh]QxT’ and substituting the boundary conditions

on f and g in the remaining terms,

~[£, Dhl .+ [D*, h) = - Jgtl w(o LD g (2.79)
1f

F(x,t) = u(t)s' (x-1) (2.80)
then

t 1
1
[F’f]QXT = A/0~ f U(T)G'(E-l)f(E,T)dng
0

Integrating by parts,

t 1
1 E=1
Ffl =] wo | eeosen] - | EED se-1yae| ar
QxT .{; £=0 J(; of
t
= —f u(r) -a%%‘l)— dt (2.81)
0
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Since the right hand side of equation (2.81) is the same as
equation (2.79), the generalized function, F, in equation (2.80),
satisfies equation (2.67) for all appropriate f and h. Thus, the

equivalent problem to that given in equation (2.73) is

2 ’ .
gy(g,t) . 3 y(xét) + u(t)6' (x-1) (2.82)
T 9xX
y(x,0) = 0
y(0,t) = 0
y(l,e) = 0

Expand y(x,t) in terms of the eigenfunctions of the homogeneous equa-
tion,
y(x,t) = :2: Yo ()4, (%) (2.83)
n=1
Substitute equation (2.83) into equation (2.82),
2 5 (@ = 2y (9 + u(e)s (x-1) (2.84)

n=1 n n=1

From equation (2.75),
WG = - a’nly_(x)

Substitute the above into equation (2.84)

5 (v ) = - 2 nfdy (D4 (0 +u()s'(x-l)  (2.85)
n=1 n=1
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Multiply through equation (2.85) by wm(x) and integrate over the
interval (0,1).

Using the properties,

1
J(; lbm(an(x)dx =8

and
1
I v (xX)8'(x-1)dx = - ¢'(1) = - (-1)™ v2 mr
o ™ m
The following infinite set of ordinary differential equations
results.
. 2
y () = - m?r y (8 = (D™ V2 u(e) (2.86)

The initial conditions are
y,(0) =0

This is a useful form for control systems problems. It appears in
the usual form of linear control systems problems in finite dimensional
control systems. Since there are infinitely many equations to be satis-

fied in this case, the appropriate term infinite dimensional control

system is applied.

The solution to equation (2.86) is given by

t
22
y (8) = = (<D™ o \/z__g ™ T (D (1yde (2.87)

m=1, 2, ...

32



Thus the solution to equation (2.73) is given by the expansion in
equation (2.83) with yn(t) given in equation (2.87).

The heat equation, equation (2.73), also furnishes a good example
of the possibility of ill posed problems arising in partial differential
equations. First, look at the solution to the initial value problem
with homogeneous boundary conditions. Let y(x,t) be the solution to

equation (2.73) with
y(x,0) = y_(x)
y(0,t) = y(1,t) =0
Then the solution, given in equation (2.23), is
y(x,t) = :g: v, (® e-nzwzt JZ  sin amx

n=1

where

1

Yn(O) = f yo(x) \/E_ sin nwxdx
0

Let yl(x,t) and yz(x,t) be two states resulting from arbitrary

initial states yl(x,O) and yz(x,O) and compute the norm of their

difference at time t = tl.
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1 A
y, xt) = vyt -fo [y, (x,t) = ¥,(x,e)1% dx

® 2 2
1 -n 7 tl 2
= 25 [y (0)-y _(0)]e V2 sin nmx dx
0 nl n2

n=1

o

1 [ -]
[ 2 Z 17,1 @515, 05, )]

0 n=1 m=1

~(m?® + nz)nztl
e 2 sin nmx sin mwx dx

d 2 —2m2ﬂ2t1
2 1y -y,

m=1

]

A

Zl [y O -y, (0 12
m=

[y, x,0) - y,(,0] 12

Therefore the requirement of the continuity of state at time t,

due to the initial conditions is seen to hold. Thus yl(x,O) close to
yz(x,O) at t=0 implies that at future times tl’ the resulting states
yl(x,tl) and yz(x,tl) will be close also. Now suppose the reverse
problem posed. Given the state at time t1>0, is it possible to deter-
mine what the state of the system was at time t=0? The answer is that
it is only possible to give the initial state if the state at time t1

is known exactly. If two states are close at time tl, it says nothing
about how close the states were at time t=0. For example, let two

states at time t=0 be given by
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yl(x,O) = gin mx
YZ(X,O) = sin 7x + C sin Nmx

The states at time tl are
—'nztl
yl(x,tl) = e sin mx

—nzt —Nznzt

yz(x,tl) = e 1 sin 7x + Ce sin Nmx

Therefore

—Nzﬂzt

1
[y Gxaty) = vyt | = [cle

Thus for t1>0, and arbitary C, it is possible to make yz(x,tl)

arbitarily close to yl(x,tl) by picking N sufficiently large. However

at t=0,
[y, (x,0) - y,(x,00]] = [c]

Thus it is possible for two states at time t=0 to be arbitrarily
far apart by making |C| arbitarily large even though at time t the

states may be made arbitarily close by choosing N sufficiently large.
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CRECEDING PAGE BLANK NOT FiLM&ED.
CHAPTER 3

CONTROLLABILITY

3.1 INTRODUCTION

This chapter will be concerned with some of the abstract ideas of
controllability, and also a topic closely related to controllability
which has been termed minimum effort control systems or minimum energy
control systems. These systems will be treated here by the intro-
duction of the pseudo-inverse of an operator which is a generalization

of the pseudo~-inverse of a matrix.
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3.2 CONTROLLABILITY OF DISTRIBUTED PARAMETER SYSTEMS
For the following, consider the partial differential equation
given by equations (2.3) and (2.4), and assume w=0 and yo(x) =0,

The solution is then given by equation (2.5),
y = LQf (3.1)

LQ is an inverse operator to the differential operator %E--A in the

sense that

(3o -MLf = f (3.2)
for all feLZ(QxT)
and
LG by = y (3.3)
for all ye D(g—'-A)
at

If y(x,t) is any state resulting from a control £ given by
equation (3.1), equation (3.2) implies that this state y must be in
the domain of the operator %E-—A. Thus at any time teT, the state
y(x,t) must be in the domain of the operator A. Since A 1is a
differential operator, it can be seen that it is not possible for the
set of states to be the whole space in which the states lie, i.e.,
LZ(KD. The set of states which can be achieved is at most a dense

subset, D(A), of the whole space. This is quite different from the

finite dimensional case where A 1is a matrix operator, and the set of
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states which can be reached is the whole state space. The generaliza-
tion of the concepts of controllability for infinite dimensional
systems will now be discussed.

Let the time be fixed at ts and the state be given as y(x,t.).

Let

Y = state space
U = space of controls
L = linear operator from the control space to the

state space at fixed time tl.

The system defined by the spaces Y and U and the operator L

will be called the system (L, U, Y).

For example, if the relation between the control f and the

state y 1s given by

t
1
y(x,t,) =£ G(x,t, 3 E,7)£(E,7)dEAT
1 L 1

the operator L 1is given by

t
1
Lf(x,tl) 1/‘ .[ G(x,tl; E,T)f(E,T)dEdT
0 Q
The control space U is
U= Lz(QxT)

The state space is

Y = LZ(Q)
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The case of boundary control can also be considered under this
general discussion. If the relation between the control u and the

state y 1is given by
f1
y(x,t,) = G, (x,t; T)u(T)drT
1 0 B

The operator L 1is given by
t

1
Lu(x,tl) =-£ GB(x,tl; T)u(t)dr

The control space U is
U= LZ(T)

The state space is
Y = LZ(Q)

The problem of controllability is to determine if, for a given
desired state ydaY, there is a control ueU and a finite time tl such

that

y, = La (3.4)

In addition to the requirement that u 1lie in U, there may be
additional constraints, for example requiring that u satisfy a con-

straint in the magnitude of its norm.

The reachable set of states is natural to define as follows.

R = {yeY; y=Lu u:admissible}
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where u belongs to a set of controls which are to be termed admiss-
ible. The set R is called the reachable set. Two particularly
important classes of admissible controls to consider arise when the

control occurs at the boundary with U = LZ(T) and the constraints are
(1) 1 2 and (11) [F1 2
L u (£)dt < = f u (t)dt < M for some positive con-
0

stant M. The first is just the requirement that ueU; the second is a
norm constraint on u. The aspects of controllability under the first
constraint will be the topic of the present chapter; the reachable set
under the second constraint will be the topic of the next chapter.

When the set of admissible controls is the whole space U, it can
be seen that the reachable set is the range of the operator L.

Define

R(L) = range of L

R(L)

{yeY; y=Lu, ueU}

As it was noted previously, the range of L is in general not

closed.

Define

R(L) = closure of the range of L

Now the definition of complete controllability is made as follows.
Definition 2.1. Complete Controllability. The system (L, U, Y) is

completely controllable if and only if R(L) = Y.
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The physical interpretation of this definition is that although
not every point in Y can be reached with a control from U, R(L) is
dense in Y. Therefore it is possible to come arbitarily close to any
state in Y if the system is completely controllable. Closeness is
meant in the sense of the norm in Y which is a Hilbert space.

Since the operator L is a linear operator from one Hilbert space,
U, to another Hilbert space, Y, it is possible to obtain several
results concerning complete controllability based on theorems which
are easily obtained in functional analysis.

Let the inner products on U and Y be denoted by [u,v]U for
u,veU and [x,y]Y for x,yeY.

Define the adjoint operator as a linear mapping from Y to U.

L¥*:Y > U
such that

[y,Luly = [L*y,ul
for all

uel

yeY

Define the null space of L as N(L).

N(L) = {ueU; Lu = 0}

-
Define the orthogonal complement of R(L) as {R(L)}
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S
{(R(OL)} = {er;,[y,Lu]Y = 0 for all ueU}

Since Y is a Hilbert space, it has the following direct sum

decomposition [13, p. 246].

Y-TROT ® ®OT - (3.5)

| By this it is meant that for each yeY, there are unique elements Y1

: —_ E——
| and y, such that y eR(L), y,e{R(L)} and
y=y, +v,

From the above definitions, the following relationships are easily

‘proven to be true [13, p. 250].

R(L) = N(L*)* (3.6)
—_—d
RD7T = N(L*) (3.7)
R(D) = R(LL® (3.8)
N(L#*) = N(LL%) (3.9)

A theorem regarding complete controllability can now be stated
which is a generalization of that given by Kalman, et.al., [7], for
finite dimensional systems.

Theorem 2.1 The system (L, U, Y) is completely controllable if

and only if N(LL*) = {0}. ({0} is the set consisting of only the zero

element)
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Proof. By the direct sum decomposition in equation (3.5),

, 1
Yy={RDL} @ RO}

— —
Therefore, Y = R(L) if and only if {R(L)} = {0}.
—_—
By equation (3.7), {R(L)} = N(L*). Therefore, by equation (3.9,
RS &
{R(L)T = N(LL*). Hence the system (L, U, Y) is completely controllable

if and only if N(LL*) ={0}. Q.E.D.
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3.3 PSEUDO-INVERSE OF L

Some further generalizations of the results in [7] can be made.
If there is a ugU satisfying equation (3.4) for a given Yqo it is
usually not unique. It is of interest to determine which u of all
those satisfying equation (3.4) has the minimum norm. Since the
Hilbert space chosen to work with is LZ(T)’ the square of the norm is
proportional to the energy required so that the minimum norm control
may also be called the minimum energy or minimum effort control. It

is possible that Y4 is not in the range of L. In this case the decom-

position of Y4 is given by

Y=Yy 1Y, (3.10)
with
y1eR(1)
N |
yze{R(L)}
This implies either there is a non-zero component ¥y O ¥, is actually

a limit point of R(L) and not in R(L).

Let

R(L)' = limit points of the range of L but not in R(L).

If yleR(L)', then it is possible to come arbitrarily close to v,
with controls from U, but it is impossible to achieve Yy exactly. 1In
this case, seeking a u of minimum norm is no longer meaningful and is

one of the difficulties which are encountered in infinite dimensional
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systems which does not arise in the finite dimensional problems. If
yleR(L), and Yy in equation (3.10) is non-zero, the question of which
yeR(L) is closest to y4 can properly be asked. It 1s quite easy to see

that ¥y is the closest. That is,
[y, = v4lly < Hy = y4lly (3.11)
for all yeR(L).

The proof of the inequality in (3.11) is as follows:

2
Hy = v4llg = Iy —ygr ¥ - v4ly

[(y = y)-¥ys (y = y)-v,1y

Hy - y,112 = 20y,, Cy -1y + |yl 15

But
[y,, 0 =y)ly =0
since
y -y eR(L)
and
Y,€ {i_(‘L—)—}'L
Therefore

2 2 2
lly—yd||Y= lly_Y1||Y+ ||y2||Y
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and is minimum when y = Yye

A decomposition of the space of controls, U, is also possible in

terms of N(L) and N(LYL
4
U = N(L) ®N(L)
Therefore for all yleR(L), and for all ueU such that

y, = Lu (3.12)

u has the unique representation

where

and
uzeN (L)

By a similar argument to the above, the u of minimum norm satisfying
equation (3.12) is u, . The definition of a pseudo-inverse of the
operator L can now be made which is an extension of the idea of the
pseudo~inverse of a matrix.

Let

L+ = pseudo-inverse of L

The desired properties of ﬁ+ are that it be a linear mapping from

Y to U such that for yeY, and
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u= L+y
u 1is such that lly-LuIl is minimum, and if
y, = Lu (3.13)

u 1is the element of U having minimum norm satisfying equation
(3.13). As it has been pointed out, the range of L 1s not closed
and therefore it is not possible to define the pseudo-inverse L+ on
the whole space Y such that it has the properties listed above. The
pseudo-inverse for L 1is defined as follows.

Definition 2.2. Pseudo-inverse of L

-+
The pseudo-inverse of L 1s a mapping, L+, from R(L) (:) {R(L) }

to U such that for

y eR(L)

Py
where uleN(L) and Lul =y,

— ¥
and for y,e {R(L)}

This definition does give the operator L+ the desired properties,

but it is useful to be able to express it more directly in terms of L

and L*. By the definition of L+,

reLh = Nyt (3.14)
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Interchanging the role of L and L* in equation (3.6) and using

the result in equation (3.14),
+ ——
R(L') = R(L¥*) (3.15)
equation (3.8) and equation (3.15) together imply

R(LY) = R(TAY
Thus the problem of finding the pseudo inverse of L, given Yqo
is to find the ueﬁ?f;fy such that equation (3.13) is satisfied where
Y4 has the decomposition given by equation (3.10). In order to find
the solution, let {Yi} be the non-zero eigenvalues of L*L and {¢i}

the corresponding eigenfunctions.
* =
L L¢i Yi¢i (3.16)

Since the Y, are non-zero, equation (3.16) implies ¢ieR(L*L) for
all i, Also, the ¢i form an orthonormal set because of the self-
adjointness of L*L. Assuming that u can be expanded in terms of

the {¢i} as
(3.17)

then it follows that ueR(L*L)

The above expansion is valid for the purpose in which it is going
to be used later, provided the operator L*L is completely continuous
(or compact, as it is also called) [13, p. 336]. The question of

whether the operator L or L*L is completely continuous in connection
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with partial differential equations is one which is currently receiving
a great deal of attention by mathematicians. As stated previously, it
is not the purpose of this dissertation to attempt to answer questions
such as these, and the assumption is simply made that the expansion
in equation (3.17) is valid for all uéﬁ?f;ffl

Before concluding with the solution to equation (3.13), the
following lemma is needed.

ky = L*
Lemma 3.1 L Y4 L Y1
Y4 is given by the expansion in equation (3.10); therefore,
*y = L% *
L Y4 L Yy + L Y,

SE—
since yzs{R(L)}, equation (3.7) implies

]
o

*
L y2
hence
* = L*
L*y, = Ly, (3.18)

Now, suppose there is a u satisfying equation (3.13). Using the

expansion in equation (3.17),
i=1

Operating on both sides of the above by L* and using equation

(3.18),

L*L ( Z u,$,) = L*y (3.19)
iy 11 d

50



Using Equation (3.16),

[>)
z Y u,¢. = L*y
1=1 i d

Taking the inner product of the above with ¢, in U and using

3

the orthonormality of the {¢i}, it is possible to solve for Uy

=1
uj = Yj [¢j, L*yd]U

Thus the pseudo inverse of L 1is
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3.4 COMMENTS ON RELATED WORK

A general summary of the results available on controllability for
finite dimensional control systems can be found in Kalman, et. al., [7].
In that paper, the minimum energy control is found by making use of the
pseudo-inverse of a matrix. For finite dimensional control systems,
the operator LL* is simply a matrix, for which the notion of a pseudo-
inverse was first introduced by Penrose [l4]. The relationship between
the pseudo-inverse of LL* and the pseudo-inverse of L given in defin-
ition 2.2 for finite dimensional control systems is contained in the
following lemma.
Lemma 3.2. If the state space Y 1is finite dimensional, L+ = L*(LL*)+.
Proof. For finite dimensional control systems, R(L) = R(L), Thus the

decomposition of Y in equation (3.5) becomes
o~ i
Y = R(L) & R(L)

Let y,cR(L). Then by definition 2.2,
1

+
L vy =9 (3.20)
where
uleN(;y*
and
Lu1 =y (3.21)
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L*(LL*)+y1 = u

The first step is to show

Let

<
]

+
*
(LL*) 'y,
Since yleR(L), by equation (3.8),
yleR(LL*)
Therefore, by definition (2.2),
4
y_eN(LL%*)
o
and
Xy =
LL Yo vy
By equations (3.22) and (3.23)
= L%
u, =L Yo
hence

uosR(L*)
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Therefore by equation (3.6), interchanging the role of L and L%,

uoeN(L)
Operating L onto equation (3.27),
= LL*
Luo LL Yo
Therefore, because of equation (3.26),
Luo R4t
Subtracting terms in equations (3.20) and (3.30) implies

L(u° - ul) =0

.
Since u - uleN(L),

and completes the first step of the proof for yleR(L).

Next let yzsR(Lfﬁ By definition 2.2,

+
L Yy = 0

Because of equation (3.8), yzeR(LL*),

hence

@ty = 0
also. Thus

L(LLsty, = 0
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Since

Ly, = L*(LL*)+71

for yleR(L)
and
= L+ 'y,
for yzeR(L)*

the proof of the lemma is complete.

The pseudo-inverse of matrices has had many applications and
recently the pseudo-inverse of more general linear operators have been
defined and studied, e.g., Loud [15]. Loud applies the generalized
inverse to differential operators which do not have a unique solution.
The definition given in this dissertation is an extension to infinite
dimensional spaces of that given by Zadeh and Desoer [16] for matrices.

The study of minimum effort control systems by the methods of
functional analysis has been carried out by many people. The work of
Hsieh [8, 17] and Balakrishnan [18] is the most closely related to
that appearing here. They use the fact that the minimum effort control,

u, must satisfy the equation

L*Lu = Ly, (3.31)

The above is equation (3.19). They use the eigenfunctions of L*L
to obtain an expansion of u and solve equation (3.31). This was the

method used following equation (3.19).
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The only related work in the engineering literature on the con-
trollability of distributed parameter systems known to the author is by
Wang (1] and Brogan [2]. Neither of them gives the definition of
complete controllability as given in definition 2.1, and both are led
to some erroneous conclusions.

Wang made the statement that the existence of an inverse of the
operator L*L was necessary and sufficient for complete controllability.
Also, the statement was made in a footnote the existence of (LL*)“1
was an equivalent condition although no proof was given. It can
easily be shown that the first statement is not true even for finite
dimensional control systems. Definition 2.1 reduces to the ordinary
definition for complete controllability as any reasonable definition
should. The second statement is equivalent to theorem 2.1 which has
been proven here. Notice that N(LL*) = {0} is equivalent to the state-
ment that the inverse of LL* exists [13, p. 18]. A simple finite
dimensional counter-example of a completely controllable system will
show that in general (L*L)_1 does not exist. Consider the scalar

system described by the first order ordinary differential equation

%% = ay 4+ u O<t<t . (3-32)
y(0) =0
In this case the control space, U, is

U= LZ(T)
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for

The

state space, Y, is

linear operator, L, mapping U dinto Y is

5 a(tl-r)
Lu =.[ e u(t)dr
0
inner product in U is
Y1
[u, v]U = f u(t)v(t)dt, u,vel
0
inner product in Y is
[X,Y]Y = Xy x,yeY

adjoint operator to L is found to satisfy

all xeY and all ueU.

left hand side of equation (3.33) is

t al(t,-1)
[x,Lu], = x f e u(t)dr
Y
0
right hand side of equation (3.33) is
t

1
[L*x, u]U = .f u(t)L*x dt
0

To obtain the equality required in equation (3.33),

a(tl-t)
L*x = e X
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and belongs to U as a function of t.

The operator LL* is given by

LL*x

e xdT

J‘tl 20(t,~1)
0

2at

A _ 1
= 35 (1 e )x

Therefore in this simple case, the operator LL* is just a scalar,

* = ——
LL 5 (e

Thus LL* has an inverse provided o#0 and O<t, and the system is

1
completely controllable. However the operator L*L is a mapping from
U to U and is given by
a(tl—t) t1 a(tl-T)
L*Lu = e e u(t)dr
0

L*Lu belongs to U as a function to t. In this case it is possible

to find a non-zero u such that

L*Lu = 0
For example,
+1 O<t<t’
u(t) =
-1 t'st<t
where
-at
1
N § 1+e
t " In [ 2 ]
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will do. Hence (L*L)"l does not exist. This is the case in general
since there is usually no unique control which will transfer the state
from the origin to the desired final state., I.e., it is usually

possible to find a non-zero u such that
Iu=0

This implies
L*Lu = 0

for non-zero u and that (L*L)—1 seldom exists.

Sakawa [19] studied a particular distributed parameter control
system which is a slight variation of the problem in the example of
Chapter 2. He found the Green's function for the system and then
proceeded to derive a necessary condition which the control must
satisfy in order to achieve a desired final state by use of varilational
methods. His resulting necessary condition was equation (3.31) after
the appropriate definitions of terms used here. The unfortunate
circumstance which arises in distributed parameter systems is that
equation (3.31) is an integral equation which has to be solved, and in
general it is very difficult to obtain an analytical result. Sakawa
obtained numerical results through the use of linear programming by
making a discrete approximation of the original partial differemtial

equation and adding a magnitude constraint on the control.
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3.5 SUMMARY

The new results of this chapter are on controllability of distri-
buted parameter systems and the study of minimum energy control systems
by the introduction of the pseudo-inverse of the operator L. A
motivation for the definition of complete controllability in definition
2.1 has been given. This definition includes the special case of
finite dimensional control systems. A generalization of the results
of Kalman et.al., [7] is contained in Theorem 2.1 and a correction of
the previously reported theorem by Wang [1l] has been made. The general-
ization of the pseudo-inverse of a matrix given by Zadeh and Desoer
[16] has been made to include the linear operators associated with
distributed parameter systems. This method is a new approach to the
study of minimum energy control systems and was shown to include the
results previously presented for finite dimensional control systems by
Kalman, et.al., [7] and a special case of a distributed parameter

system by Sakawa [19].
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CHAPTER 4

REACHABLE STATES

4.1 REACHABLE STATES WITH CONSTRAINT ON THE CONTROL
This chapter will deal with finding the set of reachable states
when the magnitude of the norm of the control is constrained. It is

further assumed there is only one control available and it is a func-

tion of t only. This situation arises when the control appears at the
boundary as in the case of the example in Chapter 2. Also, it is
assumed that the state, y(x,t), is scalar valued. Although these
restrictions place a limitation on the results, most distributed
parameter control systems encountered in practice are included in the
class just described. Thus it is assumed the system is that given by

equation (2.1) with the further restriction that the control appears

as follows:

¥ -y + F@u® %.1)
Uy =0

Y(X,O) =0

Here, it is assumed the problem has been reduced to its equivalent
homogeneous boundary value problem. Thus F(x) may be a generalized

‘ function, i.e., it may include § functions or their derivatives. The
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system given in equation (2.2) can also be included in this form since
it can be reduced to a first order form through the introduction of a
state which is a complex variable.

This will be shown in an example later. Hence, all scalar valued
variables may assume complex values throughout this chapter.

As in Chapter 2, assume the state, y(x,t), can be expanded in

terms of the eigenfunctions of the homogeneous boundary value problem.

oo

y(x,t) = Z yn(t)wn(x)

n=1

where

Awn B )‘nwn

an =0 n=1, 2, ...

Also, let the elgenvalues and eigenfunctions of the adjoint operator

A* be given by

A* ¢li'l. = Yn ¢1:1

U*¢n = 0 n = 1’ 2, LR N 4

The control, f, in equation (2.9) for the system described in

equation (4.1) is given by

f(x,t) = F(x)u(t)
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Thus the terms fn(t) given in equation (2.16) for the expansion

in equation (2.15) take the form

fn(t) = LF(x)u(t)¢n(x)dx

Let

bn = j;z F(x) ¢on(,x)dx

Then
fn(t) = bnu(t)

Hence, from equation (2.21),yn(t) is found by

t
1 2 (t=-1)
yn(t) =£ e ® bnu('r)d'r

The object of this chapter will be to determine the reachable set
of states when the control is constrained in norm. That is, it is

required that
1

1 , 12
.f [u(t)|“dt <M (4.2)

0

where M 1is some positive constant.

Since y(x,0) = 0, a reachable state is meant to be reachable from
the origin.

Let the time be fixed at tl’ and for brevity, let

C, = yn(tl)
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Since the state at time t1 can be expanded in terms of Cn’

y(x,t) = 2 C ¥ ()

n=1
an equivalent definition of the state can be given, I.e., the sequence
{Cn} can be called the state of the system, and this will be done

through the remainder of this chapter.

Let
: A_(t, -t
v {t) =b e n( 1 ‘
n n
The equivalent definition for the set of reachable states is the
following
_ ftl
C = {Cn}; c = A vn(t)u(t)dt, u: admissible

where the admissible class of controls are those satisfying the con-
straint in (4.2).

The problem is now to find necessary and sufficient conditions
on sequences {Cn} such that they belong to C.

The problem stated in this form is exactly the moment problem
for which the solution was first given by Banach [10] and is stated
in more general terms in Yosida [20]. The basic result is contained
in the following theorem.

Theorem 4.1. Given (i) a sequence of functionms {vn}, where vneLz(T)
for each n, (11) a sequence of complex numbers Cn’ and (1ii) a posi-
tive constant M, in order that there exist a function ueLz(T)

satisfying
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t

1
a) f luce) |%at < ¥
0

and
t
b) j(; vn(t)u(t)dt =C (4.3)

for all n

it is necessary and sufficient that for each finite sequence of complex

numbers {nl, ooy nN}, the following inequality 1s satisfied.

N
2 n v (t) |2at (4.4)

n=1

| 2 ne,l < N[

The proof can be found in Banach [10] or Yosida [20, p. 106] and
makes use of the Hahn-Banach theorem.

The theorem allows one to deal with a finite number of quantities
in testing for the existence of a solution to an infinite number of
equations in (4.3).

Some consequences of this theorem will now be given and then the
results will be applied to some specific examples.

First, a more compact notation will be introduced.
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EN is an N component column vector

Let

g_ﬁ = (nl, cees nN)

_r_1§ is an N component row vector, where r-11 is the complex conjugate of
ni.
N
oxey = Z nC
nn
n=1

and is the inner product in the complex EN space.

The inequality in (4.2) requires that

Ingel < M\]I Z g (t)| (4.5)

n=1

The term appearing under the radical can be simplified.

f va(t)| dt

n=1
Z Z nnv(t)v (t) dt
m=1l n=1

N N ty

Z Z nn f v _(t)v (t)de

m=] n= 0 n

Let
t; )
s fo vm(t)vn(t)dt (4.6)
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and

I.e., Q. is the NXN matrix with elements q_ . Thus
> N mn

t1 N N N
2 -
f | Z nV(t)|dt= Z Znnq
0 n=] OO m=l n=1 " nm
= 0N O Iy

Hence QN is non-negative definite for all N and is positive definite

if and only if (vl, e vN) are linearly independent. Also, because

of equation (4.6), QN is Hermitian.

The square of the magnitude of the term on the left hand side of

the inequality in (4.5) can be written

Inxc. |2

= *
NN n..C..C¥n

—NN-NN

The inequality in (4.5) can be written

*, * *,
nfCChny < ¥ Dty

The dyad CNC§ is a matrix, so that the expression above is

equivalent to

0 <n Q- GO ny (4.7)

Hence in order that the inequality in (4.4) be satisfied for all
(nl, vees nN), it is necessary and sufficient that (4.7) be satisfied

for all (nl, ceny nN). However, this requirement is that the matrix
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MZQN - QNC§ be non-negative definite. This result will now be stated
as a corollary to theorem 4.1.
Corollary 4.1. In order that a sequence of numbers {CN} belong to C,

it is necessary and sufficient that the matrix

MZQN - CNCﬁ be non-negative definite for all N,

The next two theorems present, in principle at least, a method to
generate the set of reachable states. It will be necessary to impose
the requirement that QN be positive definite. As stated previously,

Qq 1is positive definite if and only if {Vl’ cees VN} are linearly
independent. If there is a linear dependence among the {vl, cens VN},
there must be a linear dependence among the {Cl, ceey CN} also. To
show that this is true, suppose there is a set of scalars {al, cees aN}

not all zero such that

nﬁ;; @ v, = 0 (4.8)

For any admissible u, let
t

1
C'ﬂ = j(; vn(t)u(t)dt, n=1, ..., N.

Multiplying by o and summing implies

N t N
z ancn = fl Z anvn(t)u(t)dt
n=] 0 n=1
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But, because of equation (4.8),

and therefore a requirement of linear dependence on the states is
imposed if the {vl, ooy vN} are not linearly independent.
The following theorem geometrically characterizes the set of

reachable states.

2 .
Theorem 4.2. If QN is positive definite, M QN - CNCﬁ is non-negative
-1 2
. * <
definite if and only if CNQN CN M.
Proof

(Necessity) For all Dys

- nkx *
0 < M NNy - ARCLCRNy (4.9)

Since QN is positive definite, Q&l exists. Also since QN is

Hermitian,
* =
QN QN

and

(Qgh* = o5

Q§ is the complex conjugate transpose of QN'

Since the inequality in (4.9) must hold for all Dy it must hold

in particular for
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Iy = QO &
Thus
2 .1 -1, -l -1
0 < M° C¥Q U QQe Oy — ERQ G &
2 -1 -1 .2
=M (Choy € - (RQy &)

Since Qﬁl is positive definite, for non-zero QN’

-1
X
C“QN CN >0

Therefore
2 ~1
- Ck *
0 <M CNQN CN
or
-1 2
*
CNQN CN <M
(Sufficiency)

Since QN is positive definite and Hermitian, there exist positive

definite Hermitian matrices QN and Q;l such that
Vo) (Vo ) = g

Vogh (Vo) = o
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and
Vo  ogh =1

\ Iy is the identity matrix.

‘ Starting with the identity, for arbitrary I

* = - *
’ no = Yoy Vaaps,
it follows that

Cy =V

A

4%
~~

O
Z 1
S’
%*

ép

Vo o Yoy g

Z

Therefore

By Schwarz inequality

- 2 2 . - 2
| Vay g Vo gyl® <INy nygll? * IMagT gyl

Here, || .

I indicates the Euclidean norm.

VR agl1* = g VoY ny
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and

-1 2 -1
Vo™ ¢ ll” = chag Sy

Thus it follows that

Infen|” <(cfoy S (nfoyny)

NN

By the hypothesis,

e

-1
*,
CNQN Cy <

Therefore for arbitrary Iy

ooyl < ¥ ngoyny

or

is non-negative definite. Q.E.D.
To see the geometric interpretation, consider the following

simple example.

Let
N = 2
i9; O
Q= ’ U1 92270
0 922
M = 1
22 real
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Then

2 -1 2 -1
1931t Gy

]
@]

-1
*i =
€39, &

Therefore

A
[

-1
*
€5, S,

describes the set of points (Cl’ C2) inside of the ellipse

27t + gt - 1.

€191 2922

In order to show that the method of generating the set of reach-

able set of states has been given, define the set PN to be

-1
= . *i
Py {{cn}, CrQ Gy = M2
N=l’ 2, LN BN J

Then, in view of corollary 4.1 and theorem 4.2,

The infinite intersection is simplified because of the following

theorem.

THEOREM 4.3 PN+1 [ - PN

Proof.

Let {Cn} belong to P,
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Then for every sequence of complex numbers

N+1 \/ £ N+1
2
{nl, cees nN_+1}, | Z nnCn| < M f | z nnvn(t)l dt
n=1 0 n=1

In particular, it must hold for every sequence of the form

{nl, cees Nys 0}, which implies

N \[[tl N
2
l ZnnCn| < M : Inglnnvn(tﬂ dt

n=1

and therefore {Cn} belongs to PN. Q.E.D.
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4.2 APPLICATION TO COMPLETE CONTROLLABILITY

Although the preceeding material has dealt with controls which
were constrained in norm, there are some applications which can be made
to complete controllability if the requirement that M be fixed is
dropped.

Let

RM = y(x,tl)eLz(Q); y(x,t,) = :E: ann(x), such that

n=1

for all N gﬁqglgN gMz
M=1, 2, ...

RM is the reachable set in LZ(Q) for given M, and for convenience let

this set be defined for positive integer values of M.

Let

t

1 2. 12
U, =quel, (T); f lu(e)|“dt <M
M 2 0

Since

R(L) = 5;4 RM

Therefore, if the sets {RM} are dense in LZ(Q),

ML_)]_RM = L@
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and therefore
R(L) = L262)

and the system is completely controllable.
One should not, however, be led by similar reasoning to the
erroneous conclusion that since sets {SN} of the form
N
Sy ={y(x,tl)eL2(9); y(x,t;) = n;l C ¥, (%)

are dense in LZ(Q)’ if the finite dimensional approximation
3 (£) = Ay () + b u(t)
y,(0) =0
n=1, 2, ..., N

is completely controllable for each N, then the system is completely
controlliable. That is, the ability of the control to affect each mode
does not necessarily imply complete controllability. For example,
linear independence of {vl, ceny vN} for each finite N will imply
each finite dimensional approximation is completely controllable.

This condition is not sufficient to guarantee complete controllability.
The additional requirement needed to give complete controllability is
that if for given {Cl’ ceey CN}, u(t) satisfies

t
Cn = _{; vn(t)u(t)dt, n=1, ..., N
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then
t

1
0= f v (t)u(t)dt n2N+1
0 n

It is interesting to investigate the possibility of exactly
achieving states of the form {Cl’ CZ’ ey CN’ 0, ...} for arbitary
EN and the remainiﬁg elements zero, i.e., Cn = 0 n2N+l. Suppose
that it is desired to attain the state {Cl’ 0, 0, ...} exactly, i.e.,
the ability to achieve the first mode exactly. The possibility of

doing this is contained in the following theorem.

THEOREM 4.4 It is possible to achieve the state
C1 = arbitrary, non-zero

Cn = 0 n=2,3, ...

with a control u such that
t

1
f wl(t)dt < ¥

0

for some M 1f and only if

N
_ Inf
)y wees g} [y, - :z_:z nv |lp=L>0 (4.10)

Proof. The necessary and sufficient condition for achieving the

specified state is that for every finite sequence s

N
Inﬁcﬂl sM -] E;;nnvn||T (4.11)
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The left hand side of (4.11) is simply |ﬁlc1 . The inequality
holds for n, = 0, therefore it is sufficient to test for n; = 1. The
necessary and sufficient condition becomes
N
el s M ] v, + 20 nv |l (4.12)
n=2
for arbitrary {nz, ooy nn}. Therefore, if L>0, it is possible to
achieve the state |C1| , with a control whose norm is less than or

C
equal to -L—l-l—

7 Conversely, if L = 0, (4.12) requires that |Cl| = 0.

Q.E.D.

The above theorem implies that if it is possible to expand vy in
terms the remaining {v2, Vas ...} 1.e.,
vy = ngz Vo (4.13)
then it is not possible to achieve the first mode exactly. Note that
it is possible that {vl, vees vN} are linearly independent for all N,

but that there is expansion of vy given in equation (4.13).
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4.3 EXAMPLE

Let the system be described by the wave equation with the control

appearing at the boundary in the following form.

y(x,0)

y(0,t)

ay(l,t) _

9x

The control is of the

u(t)

slope at the edge x = 1.

The equivalent homogeneous boundary value problem is

<

Y(X,O) =

y(0,t)

ay(1,t)

X

2
9—%— + §(x-1)u(t)
oxX

: (xag) =0

(4.14)

(4.15)

This problem is an example of one in which difficulties arise in

a straight forward attempt to reduce it to a first order system by the

introduction of a two component vector, v, where
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{1, 0]

[59 0]
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u(t)



The problem is now expressed in the form

%%- Av + F(x)u(t) (4.16)
v(x,0) = 0
Uv = 0

The difficulty which arises is in the well posedness of the
problem by this choice of state variable. Richtmyer [21, Ch. 8]

shows that the initial value problem for a system, i.e.,

v _

5'{ = Av (4.17)
v(x,0) = vo(x)

Uv = 0

for some initial state vo(x) may not be well posed when reduced to a
first order system even though the original problem is well posed.
Brogan [2] also comments on this situation. For this example, suppose
the initial state is

sin w.x
v =
(X) €

0

where

Wy = (2N - 1)

S
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The solution is then found to be

sin me cos th

v(x,t) = ¢

~-w.. sin wa sin w, .t

N N

The square of the norm of the initial state is
2
2 _ €7/
Ilvo(x)HQ = 2

whereas at time t

2 :
IlV(x,t)||é - £/ cos? wyt + mﬁ sin’ wyt ]

Thus, even though the initial state can be made arbitrarily small

by the choice of €, the future states can be arbitrarily large since

Wy is of the order N. Richtmyer [21] shows that the correct choice

of the state variable for this system is

3y
at

y
9x

v(x,t) =

Rather than follow Richtmyer's approach, it will be shown that it

is possible to treat equation (4.15) directly and all of the results of

this chapter will apply.

Let {An} and {wn} be the eigenvalues and eigenfunctions of

a%y_(x)
— =>\n¢n(x), xeQ
dx
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b0 = ¢l W) = 0

Since the problem is self-adjoint in the scalar valued LZ(Q) space,

the set {wn} is orthonormal and complete [22, Ch. 7]. 1In this case

b () =V2 sinw_x (4.19)
where

o, = (0 -1) 7 (4.20)
and

A = -l (4.21)

Any function y din the Lz(QxT) space has an expansion

LRI IENCINS

where

1

[

y, () .

y(x,t)wn(X)dx

Substituting the above into equation (4.15)

Z an(t)wn(X) = ngl Xnyn(t)wn(X) + 8§ (x-1)u(t) (4.22)

n=]1

Multiplying through equation (4.22) by wn and integrating over
(0,1), the countably infinite set of ordinary differential equations

results,
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§,(8) = Ay (6) + ¥ (Dule) (4.23)

where use has been made of

1

jc; wn(x)d(x-l)dx = wn(l)

and the orthonormality of the {wn}.
In order to satisfy the initial conditions,
Yo (0) =y (0) = 0
Let
z () =y (t) + 1oy (t) (4.24)

Since the partial differential equation (4.14) is second order
in t, the state at time t 1s given by the pair of sequences
{yn(t)} and {§n(t)}. However both of these are contained in the single
sequence of complex valued functions {zn(t)}. yn(t) and §n(t) are

found by

z (t) - En(t)
y,(t) = T (4.25)

. z (t) + En(t)
y,(t) = 5 (4.26)

zn(t) satisfies the differential equation

én(t) =y (t) + 1wn§n(t)
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By equations (4.21) and (4.23),

2.(8) = = wly (8) + ¥ (Du(t) + vy (6)

Using equations (4.25) and (4.26),

2 zn(t) - zn(t)
“n 21w
n

z_(t)

+

zn(t) + En(t)

iw
n 2

+ ¥(1)u(t)

Combining terms

z (t) - En(t)

zn(t) + En(t)

zn(t) = iwn +

2

+
The differential equation for zn(t) is
zn(t) = iwnzn(t) + Y (Du(t)
with initial conditions
zn(O) =0
The solution is

t
iw (t-T1)
zn(t) =_£ e T wn(l)u(r)dT

To put this into the general form studied in this chapter, let the time

be fixed at t1 and let
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Cn - zn(tl)

iw (t,-1)
vn(r) =e O 1 wn(l)

Now the necessary and sufficient conditions for {Cn} to belong to

the set of reachable states is that there exists a control u satis-

fying
t 1
1 2 2
lu(t) |© dt s M (4.27)
0
and
[
Cn - vn(t)u(t)dt (4.28)
0
for all n

As before, define the elements 9 of the matrix QN as

[
Qn = A vm(r)vn(r)dr

It will be convenient for this example to pick ty to be

tl = 2
then

2
J‘ ei(wn - wm) (2-1)
0

9 = Wm(l)¢n(l) dt

86




From equation (4.20)

- = n-m)n
wo= ( )

Therefore
2i(wn -w)
e =1 for all m, n
When m 4 n,
2
~i(w - w)rt —i(wn - wm)T
n m e 10
J. e dt =
0 —i(wn - mm)
= Q

If m=n,

2
9n = 2 lpn(l)

From equations (4.19) and (4.20),
; s
wn(l) =2 sin (2n—l)2
therefore
2
Vo = 2

Thus
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The necessary and sufficient conditions onv{Cn} for a solution to

equation (4.28) is, by theorem 4.2, that for all N,

ohyCy < W (4.29)
In this case,
-1 2
E§QN gN = EE: |Cnl

In order that the inequality in (4.29) hold for all N, it is

necessary and sufficient that

-}; > lc_|? < (4.30)

n=1
Relating the |C |2 to y_(t,) and § ()
n n 1 n Y
2 2
e 12 = |z cep]
From equation (4.24),
|z (e | = 2 + w2 2t

So that the inequality (4.30) becomes

Z [w Yy (t) + y (t )] MZ (4.31)

n=1

Thus, the above inequality specifies the necessary and sufficient con-
ditions for the sets {yn(tl)} and {§n(tl)} to belong to the reachable

set at time tl=2 when the control is constrained in norm according to

(4.27).
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1f the requirement that M 1is fixed is dropped, the following
result is obtained.
THEOREM 4.5. The system described by Equation (4.14) is completely

controllable at time t_=2.

1
Proof. The state of the system at time t is the pair y(x,t.),
Iy (x,t,)
B e In order that the system be completely controllable, it is

necessary and sufficient that the reachable set of states y(x,tl) and

3¢ be dense in LZ(Q). The reachable set of states are those
given by
st = T 7, (e9,0 @
n=
ay(x t)
EE y (tl)w (x). (4.33)

When the requirement on u is simply that

t

1
[ w2 ae <=
0

this requires that for some M,
t

1
j(; lu(t) % at < 2

BY(x,tl) }

However, the set of states {y(x,tl), 3t

satisfying equations
(4.32) and (4.33) where {yn(tl)} and {§n(tl)} satisfy (4.31) for some
M are dense in the L2(Q) space.,

I.e., let R be the reachable set.
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3Y(x.tl)

R = (y(X.tl). T ) y(X.tl) = 5 yn(tl)wn(X)

By(x ty)
Z ¥, (e)v, ()

n=1

such that for some M

Z [wy(t)+§r2(c)154M2
1 n 1l
n=1
Then R 1is dense in the product space LZ(Q) X LZ(Q). Q.E.D.

Note that R above is not the whole product space LZ(Q) bs LZ(Q).
In order for R to be the whole space, the requirement on

{yn(tl)} and {yn(tl)} would have to be relaxed to

Z[y(c)+y<c>]<4m2

n=1
for some M. Since W is of the order of n, R 1is merely a dense

subset.
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4.4 SUMMARY

The new results in this chapter are the applications of the moment
problem to distributed parameter systems. Numerous applications have
appeared for finite dimensional control systems. The most closely re-
lated have been those by Antosiewicz [9] and Kreindler [11].
Corollary 4.1 of this chapter appears in Antosiewicz [9]. Kreindler
[11] states a result similar to Theorem 4.2 and has several examples of
reachable sets for finite dimensional systems.

Russell [6] has shown the controllability of the wave equation and

the beam equation by methods different from those used in this chapter.
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